Image: Aurelie Fontan – Biodesign Here Now Exhibitor
To this end, there is a passionate movement of biologists and designers studying and replicating the ‘design systems’ that exist in nature in an effort to apply these to how we design the cities, homes and clothes we inhabit, and more. What are these ‘design systems’? Have we copied them in the past, and if not, why not?
In nature, there are biological processes that create and sustain life (and materials) in a naturally efficient and organic manner. They maintain an equilibrium that only draws the energy required and creates byproducts that support other life. This is in contrast to the synthetic creation of materials, which are imbalanced in the sense that they harm rather than support other life and require disproportionate levels of energy for relatively small outputs.
An example of this biological versus synthetic material process can be found by comparing silk to synthetic ‘silk’. The silkworm creates a cocoon of continuous silk filament around its body length (around 3 inches), giving rise to a thread that is 1,300 metres long – in just three days. To do this, it expels a sticky silk protein while moving its head in a figure eight pattern to weave the cocoon. All it needs to do this is the correct climatic conditions and its energy source – mulberry leaves. It is an extraordinary organism that creates a raw material that has uses spanning beauty creams (silk protein protects the skin), medical dressings and of course, luxurious fabrics. The raw material has several grades of product outputs and all byproducts have value, with broken and low grade cocoons providing a superior protein food source to livestock, for example.